Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Biol Macromol ; 242(Pt 1): 124662, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119899

RESUMO

Syntenin-1 is a multidomain protein containing a central tandem of two PDZ domains flanked by two unnamed domains. Previous structural and biophysical studies show that the two PDZ domains are functional both isolated and in tandem, occurring a gain in their respective binding affinities when joined through its natural short linker. To get insight into the molecular and energetic reasons of such a gain, here, the first thermodynamic characterization of the conformational equilibrium of Syntenin-1 is presented, with special focus on its PDZ domains. These studies include the thermal unfolding of the whole protein, the PDZ-tandem construct and the two isolated PDZ domains using circular dichroism, differential scanning fluorimetry and differential scanning calorimetry. The isolated PDZ domains show low stability (ΔG < 10 kJ·mol-1) and poor cooperativity compared to the PDZ-tandem, which shows higher stability (20-30 kJ·mol-1) and a fully cooperative behaviour, with energetics similar to that previously described for archetypical PDZ domains. The high-resolution structures suggest that this remarkable increase in cooperativity is associated to strong, water-mediated, interactions at the interface between the PDZ domains, associated to nine conserved hydration regions. The low Tm value (45 °C), the anomalously high unfolding enthalpy (>400 kJ·mol-1), and native heat capacity values (above 40 kJ·K-1·mol-1), indicate that these interfacial buried waters play a relevant role in Syntenin-1 folding energetics.


Assuntos
Dobramento de Proteína , Sinteninas , Humanos , Calorimetria , Varredura Diferencial de Calorimetria , Termodinâmica , Dicroísmo Circular , Desnaturação Proteica
3.
Adv Protein Chem Struct Biol ; 130: 161-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35534107

RESUMO

Within the modular protein domains there are five families that recognize proline-rich sequences: SH3, WW, EVH1, GYF and UEV domains. This chapter reviews the main strategies developed for the design of ligands for these families, including peptides, peptidomimetics and drugs. We also describe some studies aimed to understand the molecular reasons responsible for the intrinsic affinity and specificity of these domains.


Assuntos
Peptídeos , Prolina , Sítios de Ligação , Humanos , Ligantes , Peptídeos/química , Prolina/química , Prolina/metabolismo , Ligação Proteica , Domínios Proteicos
4.
Int J Biol Macromol ; 207: 308-323, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257734

RESUMO

The recognition of PPxY viral Late domains by the third WW domain of the human HECT-E3 ubiquitin ligase NEDD4 (NEDD4-WW3) is essential for the budding of many viruses. Blocking these interactions is a promising strategy to develop broad-spectrum antivirals. As all WW domains, NEDD4-WW3 is a challenging therapeutic target due to the low binding affinity of its natural interactions, its high conformational plasticity, and its complex thermodynamic behavior. In this work, we set out to investigate whether high affinity can be achieved for monovalent ligands binding to the isolated NEDD4-WW3 domain. We show that a competitive phage-display set-up allows for the identification of high-affinity peptides showing inhibitory activity of viral budding. A detailed biophysical study combining calorimetry, nuclear magnetic resonance, and molecular dynamic simulations reveals that the improvement in binding affinity does not arise from the establishment of new interactions with the domain, but is associated to conformational restrictions imposed by a novel C-terminal -LFP motif in the ligand, unprecedented in the PPxY interactome. These results, which highlight the complexity of WW domain interactions, provide valuable insight into the key elements for high binding affinity, of interest to guide virtual screening campaigns for the identification of novel therapeutics targeting NEDD4-WW3 interactions.


Assuntos
Bacteriófagos , Complexos Endossomais de Distribuição Requeridos para Transporte , Motivos de Aminoácidos , Antivirais , Bacteriófagos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Ligantes , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
5.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670655

RESUMO

BACKGROUND: Fascin1 is the key actin-bundling protein involved in cancer invasion and metastasis whose expression is associated with bad prognosis in tumor from different origins. METHODS: In the present study, virtual screening (VS) was performed for the search of Fascin1 inhibitors and RAL, an FDA-approved inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, was identified as a potential Fascin1 inhibitor. Biophysical techniques including nuclear magnetic resonance (NMR) and differential scanning fluorimetry (DSF) were carried out in order to confirm RAL as a Fascin1 blocker. The effect of RAL on actin-bundling activity Fascin1 was assessed by transmission electron microscopy (TEM), immunofluorescence, migration, and invasion assays on two human colorectal adenocarcinoma cell lines: HCT-116 and DLD-1. In addition, the anti-metastatic potential of RAL was in vivo evaluated by using the zebrafish animal model. RESULTS: NMR and DSF confirmed in silico predictions and TEM demonstrated the RAL-induced disorganization of the actin structure compared to control conditions. The protrusion of lamellipodia in cancer cell line overexpressing Fascin1 (HCT-116) was abolished in the presence of this drug. By following the addition of RAL, migration of HCT-116 and DLD-1 cell lines was significantly inhibited. Finally, using endogenous and exogenous models of Fascin1 expression, the invasive capacity of colorectal tumor cells was notably impaired in the presence of RAL in vivo assays; without undesirable cytotoxic effects. CONCLUSION: The current data show the in vitro and in vivo efficacy of the antiretroviral drug RAL in inhibiting human colorectal cancer cells invasion and metastasis in a Fascin1-dependent manner.

6.
Exp Mol Med ; 52(2): 281-292, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32080340

RESUMO

Serrated adenocarcinoma (SAC) is more invasive, has worse outcomes than conventional colorectal carcinoma (CRC), and is characterized by frequent resistance to anti-epidermal growth factor receptor (EGFR) and overexpression of fascin1, a key protein in actin bundling that plays a causative role in tumor invasion and is overexpressed in different cancer types with poor prognosis. In silico screening of 9591 compounds, including 2037 approved by the Food and Drug Administration (FDA), was performed, and selected compounds were analyzed for their fascin1 binding affinity by differential scanning fluorescence. The results were compared with migrastatin as a typical fascin1 inhibitor. In silico screening and differential scanning fluorescence yielded the FDA-approved antidepressant imipramine as the most evident potential fascin1 blocker. Biophysical and different in vitro actin-bundling assays confirm this activity. Subsequent assays investigating lamellipodia formation and migration and invasion of colorectal cancer cells in vitro using 3D human tissue demonstrated anti-fascin1 and anti-invasive activities of imipramine. Furthermore, expression profiling suggests the activity of imipramine on the actin cytoskeleton. Moreover, in vivo studies using a zebrafish invasion model showed that imipramine is tolerated, its anti-invasive and antimetastatic activities are dose-dependent, and it is associated with both constitutive and induced fascin1 expression. This is the first study that demonstrates an antitumoral role of imipramine as a fascin1 inhibitor and constitutes a foundation for a molecular targeted therapy for SAC and other fascin1-overexpressing tumors.


Assuntos
Antidepressivos/farmacologia , Proteínas de Transporte/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Imipramina/farmacologia , Proteínas dos Microfilamentos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Macrolídeos/farmacologia , Invasividade Neoplásica/patologia , Piperidonas/farmacologia , Peixe-Zebra
8.
Biochem Mol Biol Educ ; 46(3): 262-269, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29314649

RESUMO

In 1972 Christian B. Anfinsen received the Nobel Prize in Chemistry for "…his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active conformation." The understanding of this principle is crucial for physical biochemistry students, since protein folding studies, bio-computing sciences and protein design approaches are founded on such a well-demonstrated connection. Herein, we describe a detailed and easy-to-follow experiment to reproduce the most relevant assays carried out at Anfinsen's laboratory in the 60s. This experiment provides students with a platform to interpret by themselves the structural and kinetic experiments conceived to understand the protein folding problem. In addition, this three-day experiment brings students a nice opportunity for protein manipulation as well as for the setting up of spectroscopic and chromatographic techniques. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):262-269, 2018.


Assuntos
Bioquímica/educação , Laboratórios , Aprendizagem Baseada em Problemas , Dobramento de Proteína , Proteínas/química , Estudantes , Termodinâmica , Humanos , Universidades
9.
PLoS Comput Biol ; 12(5): e1004938, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27213566

RESUMO

Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis.


Assuntos
Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Biologia Computacional , Simulação por Computador , Evolução Molecular , Humanos , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Alinhamento de Sequência , Termodinâmica , Domínios de Homologia de src/genética
10.
Proc Natl Acad Sci U S A ; 110(36): E3372-80, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959873

RESUMO

The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.


Assuntos
Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-abl/química , Domínios de Homologia de src , Algoritmos , Regulação Alostérica , Varredura Diferencial de Calorimetria , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Termodinâmica
11.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 8): 1030-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22868769

RESUMO

The hepatitis C virus nonstructural 5A (NS5A) protein is a large zinc-binding phosphoprotein that plays an important role in viral RNA replication and is involved in altering signal transduction pathways in the host cell. This protein interacts with Fyn tyrosine kinase in vivo and regulates its kinase activity. The 1.5 Å resolution crystal structure of a complex between the SH3 domain of the Fyn tyrosine kinase and the C-terminal proline-rich motif of the NS5A-derived peptide APPIPPPRRKR has been solved. Crystals were obtained in the presence of ZnCl(2) and belonged to the tetragonal space group P4(1)2(1)2. The asymmetric unit is composed of four SH3 domains and two NS5A peptide molecules; only three of the domain molecules contain a bound peptide, while the fourth molecule seems to correspond to a free form of the domain. Additionally, two of the SH3 domains are bound to the same peptide chain and form a ternary complex. The proline-rich motif present in the NS5A protein seems to be important for RNA replication and virus assembly, and the promiscuous interaction of the Fyn SH3 domain with the NS5A C-terminal proline-rich peptide found in this crystallographic structure may be important in the virus infection cycle.


Assuntos
Proteínas Proto-Oncogênicas c-fyn/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Calorimetria/métodos , Clonagem Molecular , Cristalografia por Raios X/métodos , Hepacivirus/metabolismo , Humanos , Ligantes , Luz , Peptídeos/química , Prolina/química , Ligação Proteica , Espalhamento de Radiação , Transdução de Sinais , Zinco/química , Domínios de Homologia de src/genética
12.
Biochem J ; 442(2): 443-51, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22115123

RESUMO

In spite of its biomedical relevance, polyproline recognition is still not fully understood. The disagreement between the current description of SH3 (Src homology 3) complexes and their thermodynamic behaviour calls for a revision of the SH3-binding paradigm. Recently, Abl-SH3 was demonstrated to recognize its ligands by a dual binding mechanism involving a robust network of water-mediated hydrogen bonds that complements the canonical hydrophobic interactions. The systematic analysis of the SH3 structural database in the present study reveals that this dual binding mode is universal to SH3 domains. Tightly bound buried-interfacial water molecules were found in all SH3 complexes studied mediating the interaction between the peptide ligand and the domain. Moreover, structural waters were also identified in a high percentage of the free SH3 domains. A detailed analysis of the pattern of water-mediated interactions enabled the identification of conserved hydration sites in the polyproline-recognition region and the establishment of relationships between hydration profiles and the sequence of both ligands and SH3 domains. Water-mediated interactions were also systematically observed in WW (protein-protein interaction domain containing two conserved tryptophan residues), UEV (ubiquitin-conjugating enzyme E2 variant) and EVH-1 [Ena/VASP (vasodilator-stimulated phosphoprotein) homology 1] structures. The results of the present study clearly indicate that the current description of proline-rich sequence recognition by protein-protein interaction modules is incomplete and insufficient for a correct understanding of these systems. A new binding paradigm is required that includes interfacial water molecules as relevant elements in polyproline recognition.


Assuntos
Peptídeos/química , Domínios de Homologia de src , Bases de Dados de Proteínas , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Água/química
13.
Biochemistry ; 48(36): 8712-20, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19670909

RESUMO

WW domains are the smallest naturally independent beta-sheet protein structures available to date and constitute attractive model systems for investigating the determinants of beta-sheet folding and stability. Nonetheless, their small size and low cooperativity pose a difficult challenge for a quantitative analysis of the folding equilibrium. We describe here a comprehensive thermodynamic characterization of the conformational equilibrium of the fourth WW domain from the human ubiquitin ligase Nedd4 (hNedd4-WW4) using a combination of calorimetric and spectroscopic techniques with several denaturing agents (temperature, pH, and chemical denaturants). Our results reveal that even though the experimental data can be described in terms of a two-state equilibrium, spectral data together with anomalous values for some thermodynamic parameters (a strikingly low temperature of maximum stability, a higher than expected native-state heat capacity, and a small specific enthalpy of unfolding) could be indicative of more complex types of equilibria, such as one-state downhill folding or alternative native conformations. Moreover, double-perturbation experiments reveal some features that, in spite of the apparent linear correlation between the thermodynamic parameters, seem to be indicative of a complex conformational equilibrium in the presence of urea. In summary, the data presented here point toward the existence of a low-energy barrier between the different macrostates of hNedd4-WW4, placing it at the frontier of cooperative folding.


Assuntos
Dobramento de Proteína , Termodinâmica , Triptofano/química , Ubiquitina-Proteína Ligases/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/química , Ubiquitina-Proteína Ligases Nedd4 , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
14.
FEBS Lett ; 583(4): 749-53, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19185573

RESUMO

Here we report the first crystal structure of the SH3 domain of the cellular Src tyrosine kinase (c-Src-SH3) domain on its own. In the crystal two molecules of c-Src-SH3 exchange their -RT loops generating an intertwined dimer, in which the two SH3 units, preserving the binding site configuration, are oriented to allow simultaneous binding of two ligand molecules. The dimerization of c-Src-SH3 is induced, both in the crystal and in solution, by the binding of a PEG molecule at the dimer interface, indicating that this type of conformations are energetically close to the native structure. These results have important implications respect to in vivo oligomerization and amyloid aggregation.


Assuntos
Polietilenoglicóis/metabolismo , Polímeros/metabolismo , Domínios de Homologia de src , Quinases da Família src/metabolismo , Animais , Sítios de Ligação , Galinhas , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ligantes , Luz , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Espalhamento de Radiação , Soluções/metabolismo , Eletricidade Estática , Água/química
15.
FEBS Lett ; 581(9): 1701-6, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17418139

RESUMO

SH3 domains from the Src family of tyrosine kinases represent an interesting example of the delicate balance between promiscuity and specificity characteristic of proline-rich ligand recognition by SH3 domains. The development of inhibitors of therapeutic potential requires a good understanding of the molecular determinants of binding affinity and specificity and relies on the availability of high quality structural information. Here, we present the first high-resolution crystal structure of the SH3 domain of the c-Yes oncogen. Comparison with other SH3 domains from the Src family revealed significant deviations in the loop regions. In particular, the n-Src loop, highly flexible and partially disordered, is stabilized in an unusual conformation by the establishment of several intramolecular hydrogen bonds. Additionally, we present here the first report of amyloid aggregation by an SH3 domain from the Src family.


Assuntos
Amiloide/química , Proteínas Proto-Oncogênicas c-yes/química , Domínios de Homologia de src , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Quaternária de Proteína , Proteínas Tirosina Quinases/química , Homologia de Sequência de Aminoácidos
16.
FEBS J ; 272(13): 3317-27, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15978038

RESUMO

We investigated the role of electrostatic charges at positions D72 and K8 in the function and structural stability of cytochrome c6 from Nostoc sp. PCC 7119 (cyt c6). A series of mutant forms was generated to span the possible combinations of charge neutralization (by mutation to alanine) and charge inversion (by mutation to lysine and aspartate, respectively) in these positions. All forms of cyt c6 were functionally characterized by laser flash absorption spectroscopy, and their stability was probed by urea-induced folding equilibrium relaxation experiments and differential scanning calorimetry. Neutralization or inversion of the positive charge at position K8 reduced the efficiency of electron transfer to photosystem I. This effect could not be reversed by compensating for the change in global charge that had been introduced by the mutation, indicating a specific role for K8 in the formation of the electron transfer complex between cyt c6 and photosystem I. Replacement of D72 by asparagine or lysine increased the efficiency of electron transfer to photosystem I, but destabilized the protein. D72 apparently participates in electrostatic interactions that stabilize the structure of cyt c6. The destabilizing effect was reduced when aspartate was replaced by the small amino acid alanine. Complementing the mutation D72A with a charge neutralization or inversion at position K8 led to mutant forms of cyt c6 that were more stable than the wild-type under all tested conditions.


Assuntos
Citocromos c6/química , Citocromos c6/metabolismo , Nostoc/enzimologia , Transporte de Elétrons , Cinética , Lasers , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Conformação Proteica , Dobramento de Proteína
17.
J Mol Biol ; 342(1): 355-65, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15313630

RESUMO

SH3 domains are molecular-recognition modules that function by interacting with proteins containing sequences in polyproline II (PPII) conformation. The main limitation in designing short-ligand peptides to interact with these domains is the preservation of this helical arrangement, for which a high content of proline is needed. We have overcome this limitation by using a protein scaffold provided by the avian pancreatic polypeptide (APP), a natural hormone of 36 amino acid residues. The APP protein contains a PPII stretch packed against an alpha-helix. We have designed a structure in which some residues of the APP PPII helix are replaced by a sequence motif, named RP1, which interacts with the SH3 domain of the Abelson tyrosine kinase (Abl-SH3). This design, which we call APP-RP1, is folded and, as shown by circular dichroism, has a structural content similar to that of natural APP (APP-WT). The stability of both miniproteins has been compared by unfolding experiments; the designed APP-RP1 is almost 20 deg. C more stable than the wild-type and has a higher Gibbs energy function. This increase in stability has an entropic origin. Isothermal titration calorimetry and fluorescence spectroscopy show that the thermodynamics of the binding of the APP-RP1 molecule to Abl-SH3 is comparable to that of the shorter RP1 peptide. Furthermore, the mutation by Tyr of two proline residues in APP-RP1, which are essential for the binding of some linear peptides to Abl-SH3, demonstrates the effectiveness of the scaffold in enhancing the variability in the design of high-affinity and high-specificity ligands for any SH3 domain. The application of this strategy may help in the design of ligands for other polyproline-recognition domains such as WW, PX or EVH1, and even for the in vivo application of these miniproteins.


Assuntos
Epitopos , Polipeptídeo Pancreático/química , Prolina/química , Estrutura Secundária de Proteína , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Sítios de Ligação , Genes abl , Modelos Moleculares , Dados de Sequência Molecular , Polipeptídeo Pancreático/genética , Polipeptídeo Pancreático/metabolismo , Prolina/metabolismo , Ligação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Termodinâmica
18.
Eur J Biochem ; 271(8): 1497-507, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15066175

RESUMO

We have studied the stability of the histone-like, DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant by differential scanning microcalorimetry and CD under acidic conditions at various concentrations within the range of 2-225 micro m of monomer. The thermal unfolding of both proteins is highly reversible and clearly follows a two-state dissociation/unfolding model from the folded, dimeric state to the unfolded, monomeric one. The unfolding enthalpy is very low even when taking into account that the two disordered DNA-binding arms probably do not contribute to the cooperative unfolding, whereas the quite small value for the unfolding heat capacity change (3.7 kJ.K(-1).mol(-1)) stabilizes the protein within a broad temperature range, as shown by the stability curves (Gibbs energy functions vs. temperature), even though the Gibbs energy of unfolding is not very high either. The protein is stable at pH 4.00 and 3.75, but becomes considerably less so at pH 3.50 and below, to the point that a simple decrease in concentration will lead to unfolding of both the wild-type and the mutant protein at pH 3.50 and low temperatures. This indicates that various acid residues lose their charges leaving uncompensated positively charged clusters. The wild-type protein is more stable than its E34D mutant, particularly at pH 4.00 and 3.75 although less so at 3.50 (1.8, 1.6 and 0.6 kJ.mol(-1) at 25 degrees C for DeltaDeltaG at pH 4.00, 3.75 and 3.50, respectively), which seems to be related to the effect of a salt bridge between E34 and K13.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Thermotoga maritima/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/isolamento & purificação , Dimerização , Concentração de Íons de Hidrogênio , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Temperatura , Termodinâmica , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...